2 research outputs found

    Analysis of Large Scale PV Systems with Energy Storage to a Utility Grid

    Get PDF
    With electric distribution network operators experiencing an exponential increase in distributed energy resource connections to the power grid, operational challenges arise attributable to the traditional methods of building distribution feeders. Photovoltaic (PV) solar systems are the major contributor due to recent technological advancements. Though this renewable energy resource is beneficial to human society, unfavorable electrical conditions can arise from the inherit variability of solar energy. Extreme variability of power injection can force excessive operations of voltage regulation equipment and potentially degrade customer voltage quality. If managed and controlled properly, battery energy storage systems installed on a distribution feeder have the ability to compliment solar generation and dampen the negative effects of solar generation. Now that customers are connecting their own generation, the traditional design assumption of load flowing from substation to customer is nullified. This research aims first to capture the maximum amount of generation that can be connected to a distribution feeder. Numerous deployments of generation scenarios are applied on six unique distribution feeders to conclude that hosting capacity is dependent on interconnect location. Then, existing controllers installed on voltage regulation equipment are modeled in detail. High resolution time series analysis driven from historical measurements is conducted on two contrasting feeders with specific PV generator deployments. With the proper modeling of on-load tap changer controls, excessive operations caused by extreme PV generation swings were captured. Several services that battery energy storage systems can provide when connected to an individual distribution feeder with significant PV generation include long term absorption of excessive PV generation, dynamic response to extreme PV generation ramping, and release of stored energy for system peak shaving. A centralized master energy coordinator is proposed with the ability to dispatch the battery system in such a fashion to implement each service throughout consecutive days of operation. This solution was built by integrating load and solar energy forecasting predictions in order to construct an optimum charging and discharging schedule that would maximize the asset’s lifespan. Multiple load and solar generation scenarios including a consecutive three day run is included to verify the robustness of this energy coordinator

    A Centralized Energy Coordinator Reliant on BESS and DER-PV Operation

    Get PDF
    Abstract Many existing battery energy storage system (BESS) control schemes focus on mitigating negative impacts resulting from the operation of distributed energy resources-photovoltaic facilities (DER-PV). These include out-of-firm conditions from reverse power flow or extreme variability in the service voltage. Existing control strategies fail to consider how BESS control schemes need to operate in a consecutive day-to-day basis in order for them to be implemented in the field. In this paper, a novel energy management algorithm capable of dispatching a BESS unit upstream of a multi-megawatt DER-PV is introduced. This algorithm referenced as the Master Energy Coordinator (MEC), accepts forecasted DER-PV generation and individual feeder load to create daily charge and discharge rate schedules. Logic is integrated to the cyclic discharging event to sync with the forecasted peak load, even when it will occur during the morning of the next day. To verify the MEC operation, Quasi-Static Time Series (QSTS) simulations are conducted on a 12.47 kV distribution feeder model utilizing historical head-of-feeder and DER-PV analog DSCADA measurements
    corecore